【題目】如圖,直線y=﹣2x+3與x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標和△BEC面積的最大值?
(3)在(2)的結論下,過點E作y軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
【答案】(1)y=﹣2x2+x+3;(2)點E的坐標是(,)時,△BEC的面積最大,最大面積是;(3)在拋物線上存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形,點P的坐標是(﹣,﹣3)或(2,﹣3)或(﹣,2).
【解析】
(1)首先根據(jù)直線y=﹣2x+3與x軸交于點C,與y軸交于點B,求出點B的坐標是(0,3),點C的坐標是(4,0);然后根據(jù)拋物線y=ax2+x+c經(jīng)過B、C兩點,求出a、c的值是多少,即可求出拋物線的解析式.
(2)首先過點E作y軸的平行線EF交直線BC于點M,EF交x軸于點F,然后設點E的坐標是(x,﹣2x2+x+3),則點M的坐標是(x,﹣2x+3),求出EM的值是多少;最后根據(jù)三角形的面積的求法,求出S△ABC,進而判斷出當△BEC面積最大時,點E的坐標和△BEC面積的最大值各是多少即可.
(3)在拋物線上存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形.然后分三種情況討論,根據(jù)平行四邊形的特征,求出使得以P、Q、A、M為頂點的四邊形是平行四邊形的點P的坐標是多少即可.
(1)∵直線y=﹣2x+3與x軸交于點C,與y軸交于點B,
∴點B的坐標是(0,3),點C的坐標是(,0),
∵拋物線y=ax2+x+c經(jīng)過B、C兩點,
∴,
解得,
∴拋物線的解析式為:y=﹣2x2+x+3;
(2)如圖1,過點E作y軸的平行線EF交直線BC于點M,EF交x軸于點F,
∵點E是直線BC上方拋物線上的一動點,
∴設點E的坐標是(x,﹣2x2+x+3),
則點M的坐標是(x,﹣2x+3),
∴EM=﹣2x2+x+3﹣(﹣2x+3)=﹣2x2+3x,
∴S△BEC=S△BEM+S△MEC
=EMOC
=×(﹣2x2+3x)×
=﹣(x﹣)2+,
∴當x=時,即點E的坐標是(,)時,△BEC的面積最大,最大面積是;
(3)在拋物線上存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形,
①如圖2,AM∥PQ,AM=PQ.
由(2),可得點M的橫坐標是,
∵點M在直線y=﹣2x+3上,
∴點M的坐標是(,),
又∵拋物線y=﹣2x2+x+3的對稱軸是x=,
∴設點P的坐標是(x,﹣2x2+x+3),
∵點A的坐標是(﹣1,0),
∴xP﹣xA=xQ﹣xM,x﹣(﹣1)=﹣,
解得x=﹣,
此時P(﹣,﹣3);
②如圖3,由(2)知,可得點M的橫坐標是,
∵點M在直線y=﹣2x+3上,
∴點M的坐標是(,),
又∵拋物線y=﹣2x2+x+3的對稱軸是x=,
∴設點P的坐標是(x,﹣2x2+x+3),點Q的橫坐標是,
∵點A的坐標是(﹣1,0),
∴xQ﹣xA=xP﹣xM,即﹣(﹣1)=x﹣,
解得x=2,
此時P(2,﹣3);
③如圖4,由(2)知,可得點M的橫坐標是,
∵點M在直線y=﹣2x+3上,
∴點M的坐標是(,),
又∵拋物線y=﹣2x2+x+3的對稱軸是x=,
∴設點P的坐標是(x,﹣2x2+x+3),點Q的橫坐標是,
∵點A的坐標是(﹣1,0),
∴xP﹣xA=xM﹣xQ,即x﹣(﹣1)=﹣,
解得x=﹣,
此時P(﹣,2);
綜上所述,在拋物線上存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形,點P的坐標是(﹣,﹣3)或(2,﹣3)或(﹣,2).
科目:初中數(shù)學 來源: 題型:
【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一小題計分.
(1)方程x2﹣9x+18=0的兩個根是等腰三角形的底和腰,則這個等腰三角形的周長為_____.
(2)如圖所示,兩個等邊三角形,兩個矩形,兩個正方形,兩個菱形各成一組,每組中的一個圖形在另一個圖形的內(nèi)部,對應平行,且對應邊之間的距離都相等,那么兩個圖形不相似的一組是(請?zhí)顚懻_答案的序號)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角△ABC 中 BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.
(1)求證:S=absinC;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l與x軸相交于點M(3,0),與y軸相交于點N(0,4),點A為MN的中點,反比例函數(shù)y=(x>0)的圖象過點A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y=(k>0)的圖象上取異于點A的一點C,作CB⊥x軸于點B,連接OC交直線l于點P,若△ONP的面積是△OBC面積的3倍,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB、CD是⊙O的切線,A、B、E是切點,CD分別交PA、PB于C、D兩點,若∠APB=40°,PA=5,則下列結論:①PA=PB=5;②△PCD的周長為5;③∠COD=70°.正確的個數(shù)為( 。
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com