如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為60°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為45°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度為(即tan∠PCD=).

(1)求該建筑物的高度(即AB的長).
(2)求此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)
解:(1)過點P作PE⊥BD于E,PF⊥AB于F,

又∵AB⊥BC于B,∴四邊形BEPF是矩形。
∴PE=BF,PF=BE。
∵在Rt△ABC中,BC=90米,∠ACB=60°,
∴AB=BC•tan60°=90(米)。
∴建筑物的高度為90米。
(2)設PE=x米,則BF=PE=x米,
∵在Rt△PCE中,tan∠PCD,
∴CE=2x。
∵在Rt△PAF中,∠APF=45°,∴AF=AB﹣BF=90﹣x,PF=BE=BC+CE=90+2x。
又∵AF=PF,∴90﹣x=90+2x,解得:x=30﹣30,
答:人所在的位置點P的鉛直高度為(30﹣30)米。

試題分析:(1)過點P作PE⊥BD于E,PF⊥AB于F,在Rt△ABC中,求出AB的長度即可。
(2)設PE=x米,則BF=PE=x米,根據(jù)山坡坡度為,用x表示CE的長度,然后根據(jù)AF=PF列出等量關系式,求出x的值即可。 
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,某地修建高速公路,要從B地向C地修一座隧道(B,C在同一水平面上),為了測量B,C兩地之間的距離,某工程師乘坐熱氣球從C地出發(fā),垂直上升100m到達A處,在A處觀察B地的俯角為30°,則BC兩地之間的距離為 (    )
A.100mB.50mC.50mD.m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,反比例函數(shù)的圖象經(jīng)過線段OA的端點A,O為原點,作AB⊥x軸于點B,點B的坐標為(2,0),tan∠AOB=。

(1)求k的值;
(2)將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)的圖象恰好經(jīng)過DC的中點E,求直線AE的函數(shù)表達式;
(3)若直線AE與x軸交于點M、與y軸交于點N,請你探索線段AN與線段ME的大小關系,寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,如果,那么下列結(jié)
論正確的是【   】

 

 
A.csinA= a         B.b cosB=c       C.a(chǎn) tanA= b        D.ctanB= b

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

計算的結(jié)果是【   】
A. B.4 C. D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中, AC=6,BC=5,sinA=,則tanB=   。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年廣東梅州11分)用如圖①,②所示的兩個直角三角形(部分邊長及角的度數(shù)在圖中已標出),完成以下兩個探究問題:

探究一:將以上兩個三角形如圖③拼接(BC和ED重合),在BC邊上有一動點P.
(1)當點P運動到∠CFB的角平分線上時,連接AP,求線段AP的長;
(2)當點P在運動的過程中出現(xiàn)PA=FC時,求∠PAB的度數(shù).
探究二:如圖④,將△DEF的頂點D放在△ABC的BC邊上的中點處,并以點D為旋轉(zhuǎn)中心旋轉(zhuǎn)△DEF,使△DEF的兩直角邊與△ABC的兩直角邊分別交于M、N兩點,連接MN.在旋轉(zhuǎn)△DEF的過程中,△AMN的周長是否存在有最小值?若存在,求出它的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案