【題目】先完成下列填空,再在同一直角坐標(biāo)系中畫出以下函數(shù)的圖象(不必再列表)

1)正比例函數(shù)過( 0 , )和( 1 , );

2)一次函數(shù) 0 , )( , 0 ).

【答案】10,2;(23,3,作圖見解析

【解析】

1)代入已知坐標(biāo),根據(jù)點的坐標(biāo)描點,再連線;

2)代入已知坐標(biāo),根據(jù)點的坐標(biāo)描點,再連線.

解:(1)當(dāng)x=0時,y=2x=0
∴正比例函數(shù)y=2x過(00);
當(dāng)x=1時,y=2x=1
∴正比例函數(shù)y=2x過(1,2).
故答案為:0;2
2)當(dāng)x=0時,y=-x+3=3,
∴一次函數(shù)y=-x+3過(03);
當(dāng)y=0時,有-x+3=0
解得:x=3,
∴一次函數(shù)y=-x+3過(3,0).
故答案為:3;3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知直線軸于點軸于點,的角平分線軸于點,過點作直線的垂線,交軸于點

1)求直線的解析式;

2)如圖2,若點為直線上的一個動點,過點軸,交直線于點,當(dāng)四邊形為菱形時,求的面積;

3)如圖3,點軸上的一個動點,連接、,將沿翻折得到,當(dāng)以點、為頂點的三角形是等腰三角形時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1y=kx+b與直線l2y=bx+k在同一坐標(biāo)系中的大致位置是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,34,…排列成如圖所示的一個表.

1)用一正方形在表中隨意框住4個數(shù),把其中最大的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從大到小依次是   ,   ,   

2)在(1)的前提下,當(dāng)被框住的4個數(shù)之和等于984時,x位于該表的第幾行第幾列?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司到果品基地購買某種優(yōu)質(zhì)水果慰問醫(yī)務(wù)工作者,果品基地對購買量在3000kg以上(含3000kg)的顧客采用兩種銷售方案,甲方案:每千克9元,由基地送貨上門;乙方案:每千克8元,由自己租車運回,已知該公司租車從基地到公司的運輸費用為5000

1)分別寫出該公司兩種購買方案付款金額(元)與所購的水果之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

2)依據(jù)購買量判斷,選擇哪種方案付款少?并說理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,分別是,的中點,

1)求證:四邊形是菱形;

2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災(zāi)區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運1 000件帳篷與乙種貨車裝運800件帳篷所用車輛相等.

(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;

(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運,甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調(diào)查了若干名學(xué)生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.

(1)在這次調(diào)查活動中,一共調(diào)查了 名學(xué)生,并請補全統(tǒng)計圖.

(2)“羽毛球”所在的扇形的圓心角是 度.

(3)若該校有學(xué)生1200名,估計愛好乒乓球運動的約有多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新羅區(qū)中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要5.5萬元,購買2臺電腦和1臺電子白板需要5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學(xué)校實際,需購進電腦和電子白板共30臺,總費用不超過50萬元,則最多能購買電子白板多少臺?

查看答案和解析>>

同步練習(xí)冊答案