【題目】如圖,為了測(cè)得鐵塔的高度,小瑩利用自制的測(cè)角儀,在C點(diǎn)測(cè)得塔頂E的仰角為45°,在D點(diǎn)測(cè)得塔頂E的仰角為60°,已知測(cè)角儀AC的高為1.6米,CD的長(zhǎng)為6米,CD所在的水平線CGEF于點(diǎn)G,鐵塔EF的高為________米.(結(jié)果用帶根號(hào)的式子表示)

【答案】(10.6+3

【解析】

根據(jù)已知得出EG=CG,進(jìn)而求出CD+DG=EG,再利用測(cè)角儀AC的高為1.6m,求出鐵塔EF的高即可.

設(shè)DG=x,得出EG=x,

∵∠ECG=45°,CGE=90°,

∴∠CEG=45°

EG=CG,

CD+DG=EG,

6+x=x,

解得:x=3+3,

×(3+3)=(9+3)米,

EF=9+3+1.6=(10.6+3)米.

故答案為:(10.6+3)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求mk,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初二開展英語拼寫大賽,愛國班和求知班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示:

1)根據(jù)圖示填寫下表:

班級(jí)

中位數(shù)(分)

眾數(shù)(分)

平均數(shù)(分)

愛國班

85

求知班

100

85

2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)比較好?

3)已知愛國班復(fù)賽成績(jī)的方差是70,請(qǐng)求出求知班復(fù)賽成績(jī)的方差,并說明哪個(gè)班成績(jī)比較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x1≤x≤13x為奇數(shù)或偶數(shù)).把牌洗勻后第一次抽取一張,記好花色和數(shù)字后將牌放回,重新洗勻第二次再抽取一張.

1)求兩次抽得相同花色的概率;

2)當(dāng)甲選擇x為奇數(shù),乙選擇x為偶數(shù)時(shí),他們兩次抽得的數(shù)字和是奇數(shù)的可能性大小一樣嗎?請(qǐng)說明理由.(提示:三張撲克牌可以分別簡(jiǎn)記為紅2、紅3、黑x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹AB的高度,他們先在點(diǎn)C處測(cè)得樹頂B的仰角為 60°,然后在坡頂D測(cè)得樹頂B的仰角為300,已知斜坡CD的長(zhǎng)度為20m,DE的長(zhǎng)為10m,則樹AB的高度是( ) m

A. B. 30 C. D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)MRtABC的斜邊AB的中點(diǎn),連接CM,作線段CM的垂直平分線,分別交邊CBCA的延長(zhǎng)線于點(diǎn)D、E,若∠C=90°,AB=20,tanB= ,則DE=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)課外實(shí)踐活動(dòng)中,要求測(cè)量山坡前某建筑物的高度AB.小剛在D處用高1.5m的測(cè)角儀CD,測(cè)得該建筑物頂端A的仰角為45°,然后沿傾斜角為30°的山坡向上前進(jìn)20m到達(dá)E,重新安裝好測(cè)角儀后又測(cè)得該建筑物頂端A的仰角為60°.求該建筑物的高度AB.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,按如下步驟作圖:

分別以A、C為圓心,以大于AC的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;

連接MN,分別交AB、AC于點(diǎn)D、O;

過C作CEAB交MN于點(diǎn)E,連接AE、CD.

(1)求證:四邊形ADCE是菱形;

(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中ABCD,AMBNED,AEDE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BECD的長(zhǎng).(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

同步練習(xí)冊(cè)答案