【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克。經(jīng)市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量減少20千克。
(1)如果該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應漲價多少元?
(2)當每千克漲價多少元時,該商場的每天盈利最多?最多盈利多少元?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=CB=2,以BC為邊向外作正方形BCDE,動點M從A點出發(fā),以每秒1個單位的速度沿著A—C—D的路線向D點勻速運動(M不與A、D重合);過點M作直線l⊥AD,l與路線A—B—D相交于點N,設運動時間為t秒:
(1)當點M在AC上時,BN=_____.(用含t的代數(shù)式表示)
(2)過N作NF⊥ED,垂足為F,矩形MDFN與△ABD重疊部分的面積為S,求S的最大值
(3)當點M在CD上時(含點C),是否存在點M,使△DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市政府規(guī)定:若本市企業(yè)按生產(chǎn)成本價提供產(chǎn)品給大學生銷售,則政府給該企業(yè)補償補償額批發(fā)價生產(chǎn)成本價銷售量大學生小明投資銷售本市企業(yè)生產(chǎn)的一種新型節(jié)能燈,調查發(fā)現(xiàn),每月銷售量件與銷售單價元之間的關系近似滿足一次函數(shù):已知這種節(jié)能燈批發(fā)價為每件12元,設它的生產(chǎn)成本價為每件m元
(1)當時.
①若第一個月的銷售單價定為20元,則第一個月政府要給該企業(yè)補償多少元?
②設所獲得的利潤為元,當銷售單價定為多少元時,每月可獲得最大利潤?
(2)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得超過30元今年三月小明獲得贏利,此時政府給該企業(yè)補償了920元,若m,x都是正整數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,且不與A、B兩點重合,過點C的切線交AB的延長線于點D,連接AC,BC,若∠ABC=53°,則∠D的度數(shù)是( 。
A. 16°B. 18°C. 26.5°D. 37.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB:y=kx﹣6(k≠0)與x軸,y軸分別交于A,B兩點,點C(1,m)在線AB上,且tan∠ABO=,把點B向上平移8個單位,再向左平移1個單位得到點D.
(1)求直線CD的解析式;
(2)作點A關于y軸的對稱點E,將直線DB沿x軸方向平移與直線CD相交于點F,連接AF、EF,當△AEF的面積不小于21時,求F點橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象與軸交于兩點(點在點的左側),與軸交于點,作直線,將直線下方的二次函數(shù)圖象沿直線向上翻折,與其它剩余部分組成一個組合圖象,若線段與組合圖象有兩個交點,則的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=(x>0)的圖象于A(4,-8)、B(m,-2)兩點,交x軸于點C.
(1)求反比例函數(shù)與一次函數(shù)的關系式;
(2)根據(jù)圖象回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?
(3)以O、A、B、P為頂點作平行四邊形,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,AD=CD,點E在AD上,DE=BD,M、N分別是AB、CE的中點.
(1)求證:△ADB≌△CDE;
(2)求∠MDN的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com