某景區(qū)為方便游客參觀,在每個景點均設(shè)置兩條通道,即樓梯和無障礙通道.如圖,已知在某景點P處,供游客上下的樓梯傾斜角為30°(即∠PBA=30°),長度為4m(即PB=4m),無障礙通道PA的傾斜角為15°(即∠PAB=15°).求無障礙通道的長度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin15°≈0.21,cos15°≈0.98)
9.5m

分析:根據(jù)題意,先在Rt△PBC中,利用三角函數(shù)的關(guān)系求得PC的長,再在Rt△APC中,利用三角函數(shù)的關(guān)系求得PA的長。
解:在Rt△PBC中,PC=PB•sin∠PBA=4×sin30°=2(m),
在Rt△APC中,PA=PC÷sin∠PAB=2÷sin15°≈9.5(m)。
答:無障礙通道的長度約是9.5m。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

我市某中學在創(chuàng)建“特色校園”的活動中,將本校的辦學理念做成宣傳牌(AB),放置在教學樓的頂部(如圖所示).小明在操場上的點D處,用1米高的測角儀CD,從點C測得宣傳牌的底部B的仰角為37°,然后向教學樓正方向走了4米到達點F處,又從點E測得宣傳牌的頂部A的仰角為45°.已知教學樓高BM=17米,且點A,B,M在同一直線上,求宣傳牌AB的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

身高1.65米的兵兵在建筑物前放風箏,風箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風箏所在點G與建筑物頂點D及風箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風箏線與水平線夾角為37°.
(1)求風箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為緩解“停車難”問題,某單位擬建造地下停車庫,建筑設(shè)計師提供了該地下停車庫的設(shè)計示意圖。按規(guī)定,地下停車庫坡道口上方要張貼限高標志,以便告知停車人車輛能否安全駛?cè)搿?其中AB=9m,BC=0.5m)為標明限高,請你根據(jù)該圖計算CE。(精確到0.1m)(參考數(shù)值,,

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

“一炷香”是聞名中外的恩施大峽谷著名的景點.某校綜合實踐活動小組先在峽谷對面的廣場上的A處測得“香頂”N的仰角為45°,此時,他們剛好與“香底”D在同一水平線上.然后沿著坡度為30°的斜坡正對著“一炷香”前行110,到達B處,測得“香頂”N的仰角為60°.根據(jù)以上條件求出“一炷香”的高度.(測角器的高度忽略不計,結(jié)果精確到1米,參考數(shù)據(jù):).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90º,若sinA=,則cosA的值為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

金秋時節(jié),小芳在花雨廣場放風箏,已知風箏拉線長60米(假設(shè)拉線是直的),且拉線與水平夾角為60°(如圖所示),若小芳的身高忽略不計,則風箏離地面的高度是   米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

飛機測量一島嶼兩端A、B的距離,在距海平面垂直高度為200m的點C處測得A的俯角為53°,然后沿著平行于AB的方向水平飛行了300m,在點D處測得B的俯角為45°,求島嶼兩端A、B的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈
             

查看答案和解析>>

同步練習冊答案