【題目】某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
請根據(jù)圖表信息回答下列問題:
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調(diào)查的樣本為________,樣本容量為_______;
(2)在頻數(shù)分布表中,a=______,b=______,并將頻數(shù)分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?
【答案】 200名初中畢業(yè)生的視力情況 200 60 0.05
【解析】
(1)用第1組的頻數(shù)除以它所占的百分比即可得到樣本容量,然后根據(jù)樣本的定義寫出樣本;
(2)用樣本容量乘以0.3得到a的值,用10除以10得到b的值;
(3)用樣本值后面三組的頻率和乘以5000可估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生數(shù).
(1)20÷0.1=200(人),
所以本次調(diào)查的樣本為200名初中畢業(yè)生的視力情況,樣本容量為200;
(2)a=200×0.3=60,b=10÷200=0.05;
如圖,
故答案為 200名初中畢業(yè)生的視力情況,200;60,0.05;
(3)5000×(0.35+0.3+0.05)=3500(人),
估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有3500人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計劃選購甲、乙兩種圖書作為“校園讀書節(jié)”的獎品.已知甲圖書的單價是乙圖書單價的倍;用元單獨購買甲種圖書比單獨購買乙種圖書要少本.
(1)甲、乙兩種圖書的單價分別為多少元?
(2)若學(xué)校計劃購買這兩種圖書共本,且投入的經(jīng)費不超過元,要使購買的甲種圖書數(shù)量不少于乙種圖書的數(shù)量,則共有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖所示,則下列結(jié)論:①k<0;②a>0;③當(dāng)x<3時,y1<y2;④當(dāng)y1>0且y2>0時,﹣a<x<4.其中正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P (x,y),若點Q的坐標(biāo)為(ax+y,x+ay), 其中a為常數(shù),則稱點Q是點P的“a級關(guān)聯(lián)點",例如,點P(1,4)的“3級關(guān)聯(lián)點"為Q (3×1+4,1+3×4), 即Q (7,13)。
(1)已知點A (-2,6)的“級關(guān)聯(lián)點”是點A1,點B的“2級關(guān)聯(lián)點”是B1 (3, 3), 求點A1和點B的坐標(biāo):
(2)已知點M (m-1, 2m)的“-3級關(guān)聯(lián)點"M位于坐標(biāo)軸上,求M的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:學(xué)習(xí)了分式運算后,老師布置了這樣一道計算題:,甲、乙兩位同學(xué)的解答過程分別如下:
甲同學(xué):
①
②
③
④
乙同學(xué):
①
②
③
④
老師發(fā)現(xiàn)這兩位同學(xué)的解答過程都有錯誤.
請你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過程,幫助他分析錯因,并加以改正.
(1)我選擇________同學(xué)的解答過程進行分析. (填“甲”或“乙”)
(2)該同學(xué)的解答從第________步開始出現(xiàn)錯誤(填序號),錯誤的原因是________;
(3)請寫出正確解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:已知方程x2+x﹣3=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x.所以x=.
把x=代入已知方程,得()2+﹣3=0,化簡,得y2+2y﹣12=0.
故所求方程為y2+2y﹣12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的3倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于點D,∠ABC的平分線分別交AC、AD于E、F兩點,M為EF的中點,AM的延長線交BC于點N,連接DM,下列結(jié)論:①AE=AF;②DF=DN;③AN=BF;④EN⊥NC;⑤AE=NC,其中正確結(jié)論的個數(shù)是( 。
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com