【題目】閱讀材料:
分解因式:x2+2x﹣3
解:原式=x2+2x+1﹣4=(x+1)2﹣4
=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)
此種方法抓住了二次項(xiàng)和一次項(xiàng)的特點(diǎn),然后加一項(xiàng),使這三項(xiàng)成為完全平方式,我們把這種分解因式的方法叫配方法.請仔細(xì)體會配方法的特點(diǎn),然后嘗試用配方法解決下列問題:
(1)分解因式x2﹣2x﹣3=;a2﹣4ab﹣5b2=;
(2)無論m取何值,代數(shù)式m2+6m+13總有一個最小值,請你嘗試用配方法求出它的最小值;
(3)觀察下面這個形式優(yōu)美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.
請你說明這個等式的正確性.

【答案】
(1)(x﹣3)(x+1);(a+b)(a﹣5b)
(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,

因?yàn)椋╩+3)2≥0,

所以代數(shù)式m2+6m+13的最小值是4


(3)解:a2+b2+c2﹣ab﹣bc﹣ca,

= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),

= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),

= [(a﹣b)2+(b﹣c)2+(c﹣a)2]


【解析】解:(1)x2﹣2x﹣3,
=x2﹣2x+1﹣1﹣3,
=(x﹣1)2﹣4,
=(x﹣1+2)(x﹣1﹣2),
=(x﹣3)(x+1);
a2﹣4ab﹣5b2 ,
=a2﹣4ab+4b2﹣4b2﹣5b2
=(a﹣2b)2﹣9b2 ,
=(a﹣2b﹣3b)(a﹣2b+3b),
=(a+b)(a﹣5b);
所以答案是:(x﹣3)(x+1);(a+b)(a﹣5b);
【考點(diǎn)精析】關(guān)于本題考查的因式分解的應(yīng)用,需要了解因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計(jì)算、求值、整除性問題、判斷三角形的形狀、解方程才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校去年初一招收新生x人,今年比去年增加20%,用代數(shù)式表示今年該校初一學(xué)生人數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使BOC=65°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.

(1)如圖①,將三角板MON的一邊ON與射線OB重合時,則MOC= ;

(2)如圖②,將三角板MON繞點(diǎn)O逆時針旋轉(zhuǎn)一定角度,此時OC是MOB的角平分線,求旋轉(zhuǎn)角BONCON的度數(shù);

(3)將三角板MON繞點(diǎn)O逆時針旋轉(zhuǎn)至圖③時,NOC=AOM,求NOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個正多邊形的內(nèi)角和等于720°,那么這個正多邊形的每一個外角等于(

A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(分類討論思想)已知直線l是線段AB的垂直平分線,點(diǎn)M,N是直線l上的兩點(diǎn),如果∠NBA=15°,∠MBA=45°,則∠MAN=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天三個城市的最高氣溫分別是﹣7℃,1℃,﹣6℃,則任意兩城市中最大的溫差是(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只小球落在數(shù)軸上的某點(diǎn),第一次從向左跳1個單位到,第二次從向右跳2個單位到,第三次從向左跳3個單位到,第四次從向右跳4個單位到……若按以上規(guī)律跳了6次時,它落在數(shù)軸上的點(diǎn)所表示的數(shù)恰好是2017,則這只小球的初始位置點(diǎn)所表示的數(shù)是_______,若按以上規(guī)律跳了2n次時,它落在數(shù)軸上的點(diǎn)所表示的數(shù)恰好是a,則這只小球的初始位置點(diǎn)所表示的數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若有理數(shù)a、b滿足:|a+2|+|b﹣2|=0,求(a+b)﹣ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將正比例函數(shù)y=kxk0)的圖象向上平移一個單位,那么平移后的圖象不經(jīng)過( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案