如圖,點A、B、C都在上,若∠AOB=72°,則∠ACB的度數(shù)為

A.18°     B.30°       C.36°    D.72°
C
分析:根據(jù)圓周角定理,由∠AOB=72°,即可推出結(jié)果.
解答:解:∵∠AOB=72°,
∴∠ACB=36°.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:如圖,,為⊙O的弦,點上,若,,則的長為                  .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C、

(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立
平面直角坐標(biāo)系; ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連結(jié)AD、CD.
(2)請在(1)的基礎(chǔ)上,完成下列填空:
①寫出點的坐標(biāo):C          、D         ;
②⊙D的半徑=            (結(jié)果保留根號);
③若扇形ADC是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為         ;
(結(jié)果保留
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點為,點坐標(biāo)為點坐標(biāo)為,以的中點為圓心,為直徑作⊙P與軸的正半軸交于點

(1)求經(jīng)過三點的拋物線對應(yīng)的函數(shù)表達(dá)式.
(2)設(shè)為(1)中拋物線的頂點,求直線對應(yīng)的函數(shù)表達(dá)式.
(3)試說明直線與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題


如圖,在中,AB是的直徑,與AC交于點D,,求的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,的直徑,的弦,,則為
A.37°B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一艘旅游船從A點駛向C點. 旅游船先從A點沿以D為圓心的弧AB行駛到B點,然后從B點沿直徑行駛到圓D上的C點.假如旅游船在整個行駛過程中保持勻速,則下面各圖中,能反映旅游船與D點的距離隨時間變化的圖象大致是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)
已知:如圖8,AD是△ABC外接圓⊙O的直徑,AE是△ABC的邊BC上的高,DF⊥ BC,F(xiàn)為垂足. 

(1)求證:BF=EC;
(2)若C點是AD的中點,且DF=3AE=3,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案