已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過點(diǎn)B(2,-5).
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(3)當(dāng)函數(shù)值大于0時(shí),自變量的取值范圍是什么?
【答案】分析:(1)已知拋物線的頂點(diǎn)坐標(biāo),設(shè)頂點(diǎn)式,將點(diǎn)A(-1,4)代入求a,確定函數(shù)關(guān)系式;
(2)令x=0可求圖象與y軸的交點(diǎn)坐標(biāo),令y=0可求圖象與x軸的交點(diǎn)坐標(biāo);
(3)根據(jù)圖象與x軸的交點(diǎn)坐標(biāo),開口方向可求函數(shù)值大于0時(shí),自變量的取值范圍.
解答:解:(1)由A(-1,4)為拋物線頂點(diǎn),設(shè)拋物線解析式為y=a(x+1)2+4,
將點(diǎn)B(2,-5)代入,得9a+4=-5,解得a=-1,
∴y=-(x+1)2+4;
(2)∵y=-(x+1)2+4=-x2-2x+3=-(x-1)(x+3)
∴拋物線與y軸的交點(diǎn)坐標(biāo)為(0,3),與x軸的交點(diǎn)的坐標(biāo)為(1,0),(-3,0);
(3)∵拋物線與x軸交于(1,0),(-3,0)兩點(diǎn),開口向下,
∴當(dāng)-3<x<1時(shí),函數(shù)值大于0.
點(diǎn)評(píng):本題考查了用待定系數(shù)法求二次函數(shù)解析式的方法.關(guān)鍵是根據(jù)條件確定拋物線解析式的形式,再求其中的待定系數(shù).一般式:y=ax2+bx+c(a≠0);頂點(diǎn)式y(tǒng)=a(x-h)2+k,其中頂點(diǎn)坐標(biāo)為(h,k);交點(diǎn)式y(tǒng)=a(x-x1)(x-x2),拋物線與x軸兩交點(diǎn)為(x1,0),(x2,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過點(diǎn)B(2,-5)
①求該函數(shù)的關(guān)系式;
②求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
③將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點(diǎn)時(shí),A、B兩點(diǎn)隨圖象移至A′、B′,求△O A′B′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過點(diǎn)B(2,-5).
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過點(diǎn)B(2,-5).
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(3)當(dāng)函數(shù)值大于0時(shí),自變量的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象以A(1,-4)為頂點(diǎn),且過點(diǎn)B(3,0)
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過點(diǎn)B(2,-5).
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點(diǎn)時(shí),A、B兩點(diǎn)隨圖象移至A′、B′,求△OA′B′的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案