【題目】10名學(xué)生體檢測體重,以50千克為基準(zhǔn),超過的數(shù)記為正,不足的數(shù)記為負(fù),稱得結(jié)果如下(單位:千克):2, 3, -7.5,-3, 5, -8, 3.5, 4.5, 8, -1.5
這10名學(xué)生的總體重為多少?10名學(xué)生的平均體重為多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則點(diǎn)D的坐標(biāo)是( )
A.(﹣2,1)
B.(﹣2,﹣1)
C.(﹣1,﹣2)
D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,D為AB上不與AB重合的一個(gè)動點(diǎn),過點(diǎn)D分別作DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F,則線段EF的最小值為( )
A. 3 B. 4 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根據(jù)這個(gè)規(guī)律探究可得,第100個(gè)點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F:與直線x=-2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過點(diǎn)C時(shí),求它的表達(dá)式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為,求的最小值,此時(shí)拋物線F上有兩點(diǎn),,且≤-2,比較與的大小;
(3)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,當(dāng)∠E=90°保持不變,移動直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動時(shí),問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動點(diǎn),①當(dāng)點(diǎn)Q在射線CD上運(yùn)動時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點(diǎn)Q在射線CD的反向延長線上運(yùn)動時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線l1 經(jīng)過A,B兩點(diǎn),直線l2的表達(dá)式為,且與x軸交于點(diǎn)D,兩直線相交于點(diǎn)C.
(1)求直線l1的表達(dá)式;
(2)求△ADC的面積;
(3)在直線l1上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com