【題目】已知二次函數(shù)y=-(x-32,對(duì)于x1x23,x1、x2的對(duì)應(yīng)函數(shù)值為y1、y2,則( )

A. y1y2 B. y1y2 C. y1y2 D. 無(wú)法確定

【答案】C

【解析】:∵a=-10拋物線開(kāi)口向下,∴在對(duì)稱軸左邊,yx增大而增大.∵x1x23,y1y2故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Px0,y0和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離證明可用公式d=計(jì)算.

例如:求點(diǎn)P﹣1,2到直線y=3x+7的距離.

解:因?yàn)橹本y=3x+7,其中k=3,b=7.

所以點(diǎn)P﹣1,2到直線y=3x+7的距離為:d====

根據(jù)以上材料,解答下列問(wèn)題:

1求點(diǎn)P1,﹣1到直線y=x﹣1的距離;

2已知⊙Q的圓心Q坐標(biāo)為0,5,半徑r為2,判斷⊙Q與直線y=x+9的位置關(guān)系并說(shuō)明理由;

3已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了記錄某個(gè)月的氣溫變化情況,應(yīng)選擇的統(tǒng)計(jì)圖為(  )

A. 條形統(tǒng)計(jì)圖B. 折線統(tǒng)計(jì)圖

C. 扇形統(tǒng)計(jì)圖D. 前面三種都可以

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批節(jié)能燈,已知1A型節(jié)能燈和3B型節(jié)能燈共需26元;3A型節(jié)能燈和2B型節(jié)能燈共需29元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元;

(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,A=40°.

(1)作邊AB的垂直平分線MN(保留作圖痕跡,不寫(xiě)作法);

(2)在已作的圖中,若MN交AC于點(diǎn)D,連結(jié)BD,求DBC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=-2(x2)21的圖像的頂點(diǎn)坐標(biāo)是 ( )

A. (2,1) B. (2,1) C. (1,-2) D. (2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種病毒繁殖非?,每分鐘會(huì)由1個(gè)繁殖到3個(gè).

試問(wèn):經(jīng)過(guò)4分鐘,1個(gè)病毒會(huì)繁殖到多少個(gè)?若這些病毒繼續(xù)繁殖,m分鐘后會(huì)繁殖到多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算﹣2+6等于(  )

A. 4 B. 8 C. ﹣4 D. ﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷(xiāo)售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷(xiāo)售方案中選擇一種進(jìn)行銷(xiāo)售.若只在國(guó)內(nèi)銷(xiāo)售,銷(xiāo)售價(jià)格y(元/件)與月銷(xiāo)量x(件)的函數(shù)關(guān)系式為y=x+150,成本為20元/件,無(wú)論銷(xiāo)售多少,每月還需支出廣告費(fèi)62500元,設(shè)月利潤(rùn)為w內(nèi)(元).若只在國(guó)外銷(xiāo)售,銷(xiāo)售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷(xiāo)量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),設(shè)月利潤(rùn)為w(元).

(1)當(dāng)x=1000時(shí),y= 元/件,w內(nèi)= 元;

(2)分別求出w內(nèi),w與x間的函數(shù)關(guān)系式(不必寫(xiě)x的取值范圍);

(3)當(dāng)x為何值時(shí),在國(guó)內(nèi)銷(xiāo)售的月利潤(rùn)最大?若在國(guó)外銷(xiāo)售月利潤(rùn)的最大值與在國(guó)內(nèi)銷(xiāo)售月利潤(rùn)的最大值相同,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案