【題目】如圖1,在等邊△ABC的邊AC的延長線上取一點E,以CE為邊作等邊△CDE,使它與△ABC位于直線AE的同側(cè).
(1)同學(xué)們對圖1進行了熱烈的討論,猜想出如下結(jié)論,你認為正確的有(填序號). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ;④∠ARB=60°;⑤△CPQ是等邊三角形.
(2)當(dāng)?shù)冗叀鰿ED繞C點旋轉(zhuǎn)一定角度后(如圖2),(1)中有哪些結(jié)論還是成立的?并對正確的結(jié)論分別予以證明.
【答案】
(1)①②③④⑤
(2)解:當(dāng)?shù)冗叀鰿ED繞C點旋轉(zhuǎn)一定角度后 (1)中結(jié)論①、④仍然成立,證明如下:
∵△ABC和△CDE是等邊三角形
∴CA=CB,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠BCD=∠ECD+∠BCD
即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴∠BCE=∠CAD,
又∵∠APC=∠BPR,
∴∠ACB=∠ARB,
∵∠ACB=60°,
∴∠ARB=60°.
【解析】解:(1)∵等邊△ABC和等邊△CDE, ∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD與△BCE中,
,
∴△ACD≌△BCE(SAS),
∴∠DAC=∠EBC,
同理證明△ACP≌△BCQ;△DCP≌△ECQ;
進而得出∠ARB=60°;△CPQ是等邊三角形;
所以正確的有①②③④⑤;
故答案為:①②③④⑤;
(1)根據(jù)等邊三角形的性質(zhì)得出各角都是60°,各邊相等,再利用全等三角形的判定和性質(zhì)證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)和全等三角形的判定解答即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件中:
①∠B+∠BCD=180°;
②∠1=∠2;
③∠3=∠4;
④∠B=∠5.
能判定AB∥CD的條件個數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與兩坐標軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )
A.4
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把△ABC經(jīng)過平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),則△ABC的面積為( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P(2,2),點A在x軸正半軸上運動,點B在y軸負半軸上運動,且PA=PB.
(1)求證:PA⊥PB;
(2)若點A(8,0),求點B的坐標;
(3)求OA﹣OB的值;
(4)如圖2,若點B在y軸正半軸上運動時,直接寫出OA+OB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車隊要把4000噸貨物運到雅安地震災(zāi)區(qū)(方案定后,每天的運量不變)。
(1)從運輸開始,每天運輸?shù)呢浳飮崝?shù)n(單位:噸)與運輸時間t(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因地震,到災(zāi)區(qū)的道路受阻,實際每天比原計劃少運20%,則推遲1天完成任務(wù),求原計劃完成任務(wù)的天數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com