【題目】綜合與實踐:
概念理解:將△ABC 繞點 A 按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為 θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼?/span> n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],: .
問題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得到△AB′C′,使點 B,C,C′在同一直線上,且四邊形 ABB′C′為矩形,求 θ 和 n 的值.
拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形
【答案】(1);(2);(3).
【解析】
(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;
(2)根據(jù)四邊形是矩形,得出,進(jìn)而得出,根據(jù)30°直角三角形的性質(zhì)即可得出答案;
(3)根據(jù)四邊形 ABB′C′為正方形,從而得出,再根據(jù)等腰直角三角形的性質(zhì)即可得出答案.
解:(1)∵△AB′C′的邊長變?yōu)榱?/span>△ABC的n倍,
∴△ABC∽△AB′C′,
∴,
故答案為:.
(2)四邊形是矩形,
∴.
.
在中,,
.
.
.
(3)若四邊形 ABB′C′為正方形,
則,,
∴,
∴,
又∵在△ABC中,AB=,
∴,
∴
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:
①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;
②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;
③作AP射線,交邊CD于點Q.
若QC=1,BC=3,則平行四邊形ABCD周長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦AC為6cm,
(1)用尺規(guī)作圖畫出∠ACB的平分線交⊙O于點D.(不要寫作法,保留作圖痕跡)
(2)分別連接點AD和BD,求弦BC、AD、BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)公,作為運城乃至山西的一張名片,吸引了來自世界各地的游客,在運城西南公里的常平村(關(guān)公故鄉(xiāng))南山上,有一尊巨型關(guān)公銅像,高米,象征關(guān)公享年歲,底座的高度也有一定寓意.有一位游客,對此產(chǎn)生了興趣,想測量它的高度,由于游客無法直接到達(dá)銅像底部,因此該游客計劃借助坡面高度來測量它的高度.如圖,代表底座的高,坡頂與底座底部處在同一水平面上,該游客在斜坡底處測得該底座頂端的仰角為,然后他沿著坡度為的斜坡攀行了米,在坡頂處又測得該底座頂端的仰角為.求:
坡頂到地面的距離;
求底座的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=5,AB=6,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點的坐標(biāo)分別為A(2,2),B(1,0),C(3,1)
(1)畫出△ABC關(guān)于x軸對稱的;
(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°的△A2B1C2,寫出點C2的坐標(biāo);
(3)在(1)(2)的基礎(chǔ)上,圖中的,關(guān)于哪個點中心對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G.
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋的引橋部分的示意圖,梯面AD、BE相互平行,且與地面成37°的夾角,DE是一段水平歇臺,離地面高度3米.已知天橋高度BC為4.8米,引橋水平跨度AC為8米,求梯面AD、BE及歇臺DE的長.(參考數(shù)據(jù):,結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com