已知,AC∥ED,∠C=26°,∠CBE=37°,則∠BED的度數(shù)是(  )

  A. 53° B. 63° C. 73° D. 83°


B 解:∵在△ABC中,∠C=26°,∠CBE=37°,

∴∠CAE=∠C+∠CBE=26°+37°=63°,

∵AC∥ED,

∴∠BED=∠CAE=63°.                              故選B


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


等腰三角形的一個(gè)外角是60°,則它的頂角的度數(shù)是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


當(dāng)x=  時(shí),分式的值為0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某商場(chǎng)統(tǒng)計(jì)了今年1~5月A,B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成折線統(tǒng)計(jì)圖

(1)分別求該商場(chǎng)這段時(shí)間內(nèi)A,B兩種品牌冰箱月銷售量的中位數(shù)和方差;

(2)根據(jù)計(jì)算結(jié)果,比較該商場(chǎng)1~5月這兩種品牌冰箱月銷售量的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


【發(fā)現(xiàn)】

如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上(如圖①)

【思考】

如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過A,B,C三點(diǎn)的圓上嗎?

請(qǐng)證明點(diǎn)D也不在⊙O內(nèi).

【應(yīng)用】

利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問題:

若四邊形ABCD中,AD∥BC,∠CAD=90°,點(diǎn)E在邊AB上,CE⊥DE.

(1)作∠ADF=∠AED,交CA的延長(zhǎng)線于點(diǎn)F(如圖④),求證:DF為Rt△ACD的外接圓的切線;

(2)如圖⑤,點(diǎn)G在BC的延長(zhǎng)線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在矩形ABCD中,CD=1,∠DBC=30°.若將BD繞點(diǎn)B旋轉(zhuǎn)后,點(diǎn)D落在DC延長(zhǎng)線上的點(diǎn)E處,點(diǎn)D經(jīng)過的路徑,則圖中陰影部分的面積是(  )

  A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算:(﹣2+﹣2sin45°﹣|1﹣|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在矩形中截取兩個(gè)相同的正方形作為立方體的上下底面,剩余的矩形作為立方體的側(cè)面,剛好能組成立方體.設(shè)矩形的長(zhǎng)和寬分別為y和x,則y與x的函數(shù)圖象大致是( 。

 A.B.      C.   D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某農(nóng)場(chǎng)急需銨肥8噸,在該農(nóng)場(chǎng)南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價(jià)750元;B公司有銨肥7噸,每噸售價(jià)700元,汽車每千米的運(yùn)輸費(fèi)用b(單位:元/千米)與運(yùn)輸重量a(單位:噸)的關(guān)系如圖所示.

(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);

(2)若農(nóng)場(chǎng)到B公司的路程是農(nóng)場(chǎng)到A公司路程的2倍,農(nóng)場(chǎng)到A公司的路程為m千米,設(shè)農(nóng)場(chǎng)從A公司購(gòu)買x噸銨肥,購(gòu)買8噸銨肥的總費(fèi)用為y元(總費(fèi)用=購(gòu)買銨肥費(fèi)用+運(yùn)輸費(fèi)用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場(chǎng)建議總費(fèi)用最低的購(gòu)買方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案