【題目】2015年6月27日,四川共青圖雨城區(qū)委在中里鎮(zhèn)文化館舉辦了第二期青年剪紙培訓,參加培訓的小王想把一塊Rt△ABC廢紙片剪去一塊矩形BDEF紙片,如圖所示,若∠C=30°,AB=10cm,則該矩形BDEF的面積最大為( 。

A.4cm3
B.5cm3
C.10cm3
D.25cm3

【答案】D
【解析】解:∵Rt△ABC中,∠C=30°,AB=10cm,

∵EF∥BC,
∴∠AEF=∠C=30°,
設EF=x,則AF=x,
∴BF=10﹣x,
∴S矩形BDEF=BDBF=x(10﹣x)=﹣x2+10x(0<x<10),
∴當時,S最大==25cm2
故選D.
先根據(jù)銳角三角函數(shù)的定義求出BC的長,根據(jù)EF∥BC可知△AEF∽△ACB,故∠AEF=∠C=30°,
設EF=x,則AF=x,故AB=10﹣x,再由矩形的面積公式即可得出結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線BC與半徑為6的⊙O相切于點B,點M是圓上的動點,過點M作MC⊥BC,垂足為C,MC與⊙O交于點D,AB為⊙O的直徑,連接MA、MB,設MC的長為x,(6<x<12).
(1)當x=9時,求BM的長和△ABM的面積;
(2)是否存在點M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果經(jīng)過三角形某一個頂點的一條直線可把它分成兩個小等腰三角形,那么我們稱該三角形為等腰三角形的生成三角形,簡稱生成三角形.

(1)如圖,已知等腰直角三角形ABC,∠A=90°,試說明:△ABC是生成三角形;

(2)若等腰三角形DEF有一個內(nèi)角等于36°,請你畫出簡圖說明△DEF是生成三角形.(要求畫出直線,標注出圖中等腰三角形的頂角、底角的度數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點EAH的中點,點FGH的中點,連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某種手機卡的市話費上次已按原收費標準降低了m/分鐘,現(xiàn)在再次下調(diào)20%,使收費標準為n/分鐘,那么原收費標準為____/分鐘;

(2)買一個籃球需要m,買一個排球需要n,則買3個籃球和5個排球共需要____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在反比例函數(shù)y=(x<0)的圖象上,AD∥x軸,AB∥y軸,點B在反比例函數(shù)y=(x<0)的圖象上,過點B作BC∥x軸,交y軸于點C,若四邊形ABCD的面積為8,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2 , AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AOCBOC互余,OD平分BOC,EOC2∠AOE

1)若AOD75°,AOE的度數(shù)

2)若DOE54°,EOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關系,說明理由;

(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案