(2005•陜西)如圖,直線CF垂直且平分AD于點E,四邊形ADCB是菱形,BA的延長線交CF于點F,連接AC.
(1)圖中有幾對全等三角形,請把它們都寫出來;
(2)證明:△ABC是正三角形.

【答案】分析:(1)利用全等三角形的判定可以得出圖中共有四對全等三角形,分別是△ABC≌△CDA,△AEF≌△DEC,△DEC≌△AEC,△AEF≌△AEC;
(2)利用等邊三角形的判定可證明△ABC為正三角形.
解答:解:
(1)圖中有四對全等三角形,分別為△ABC≌△CDA,△AEF≌△DEC,△DEC≌△AEC,△AEF≌△AEC;(5分)

(2)證明:
∵CF垂直平分AD,
∴AC=CD.(6分)
又∵四邊形ABCD是菱形,
∴AB=BC=CD=DA.(7分)
∴AB=BC=AC.
∴△ABC為正三角形.(8分)
點評:此題考查了等邊三角形的判定及全等三角形的判定方法.
三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,⊙C過原點O,交x軸于點A(2,0),交y軸于點B(0,).
(1)求圓心的坐標;
(2)拋物線y=ax2+bx+c過O、A兩點,且頂點在正比例函數(shù)y=-x的圖象上,求拋物線的解析式;
(3)過圓心C作平行于x軸的直線DE,交⊙C于D、E兩點,試判斷D、E兩點是否在(2)中的拋物線上;
(4)若(2)中的拋物線上存在點P(x,y),滿足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,Rt△AOB的頂點坐標分別為A(0,2),O(0,0),B(4,0),△AOB繞O點按逆時針方向旋轉90°得到△COD.
(1)求C、D兩點的坐標;
(2)求經過C、D、B三點的拋物線的解析式;
(3)設(2)中的拋物線的頂點為P,AB的中點為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年陜西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,Rt△AOB的頂點坐標分別為A(0,2),O(0,0),B(4,0),△AOB繞O點按逆時針方向旋轉90°得到△COD.
(1)求C、D兩點的坐標;
(2)求經過C、D、B三點的拋物線的解析式;
(3)設(2)中的拋物線的頂點為P,AB的中點為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年陜西省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,⊙C過原點O,交x軸于點A(2,0),交y軸于點B(0,).
(1)求圓心的坐標;
(2)拋物線y=ax2+bx+c過O、A兩點,且頂點在正比例函數(shù)y=-x的圖象上,求拋物線的解析式;
(3)過圓心C作平行于x軸的直線DE,交⊙C于D、E兩點,試判斷D、E兩點是否在(2)中的拋物線上;
(4)若(2)中的拋物線上存在點P(x,y),滿足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

同步練習冊答案