【題目】如圖,在⊙O上有定點(diǎn)C和動點(diǎn)P,位于直徑AB的異側(cè),過點(diǎn)C作CP的垂線,與PB的延長線交于點(diǎn)Q,已知:⊙O半徑為,,則CQ的最大值是____________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,P是對角線AC上的動點(diǎn),連接DP,將直線DP繞點(diǎn)P順時針旋轉(zhuǎn)使∠DPG=∠DAC,且過D作DG⊥PG,連接CG,則CG最小值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如閣,在△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)P從點(diǎn)A出發(fā),沿折線AC﹣BC以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動,當(dāng)點(diǎn)P不與點(diǎn)A、B重合時,在邊AB上取一點(diǎn)Q,滿足∠PQA=2∠B,過點(diǎn)Q作QM⊥PQ,交邊BC于點(diǎn)M,以PQ、QM為邊作矩形PQMN,設(shè)點(diǎn)P的運(yùn)動時間為t秒
(1)用含t的代數(shù)式表示線段PQ的長;
(2)當(dāng)矩形PQMN為正方形時,求t的值;
(3)設(shè)矩形PQMN與△ABC重疊部分圖形的周長為l,求l與t之間的函數(shù)關(guān)系式;
(4)作點(diǎn)A關(guān)于直線PQ的對稱點(diǎn)A′,作點(diǎn)C關(guān)于直線PN的對稱點(diǎn)C′,當(dāng)點(diǎn)A′、C′這兩個點(diǎn)中只有一個點(diǎn)在矩形PQMN內(nèi)部時,直接寫出此時的t取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程ax2﹣(3a+1)x+2(a+1)=0有兩個不相等的實根x1、x2,且有x1﹣x1x2+x2=1﹣a,則a的值是( )
A. 1B. ﹣1C. 1或﹣1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A,B分別在x,y軸上,已知OA=3,點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,1),CD=5,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位的速度沿線段A﹣C﹣B的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時停止運(yùn)動,運(yùn)動時間為t秒
(1)求B,C兩點(diǎn)坐標(biāo);
(2)①求△OPD的面積S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)E落在x軸上時,求點(diǎn)E的坐標(biāo);
(3)在(2)②情況下,直線OP上求一點(diǎn)F,使FE+FA最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,連結(jié)DB,過點(diǎn)E作EM∥BD,交BA的延長線于點(diǎn)M。
(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點(diǎn)P,當(dāng)∠DPA=45°時,求圖中陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,△ABC中,以AC為直徑的⊙O與邊AB交于點(diǎn)D,點(diǎn)E為⊙O上一點(diǎn),連接CE并延長交AB于點(diǎn)F,連接ED.
(1)若∠B+∠FED=90°,求證:BC是⊙O的切線;
(2)若FC=6,DE=3,F(xiàn)D=2,求⊙O的直徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com