【題目】計(jì)算(1) (2) (3) (4)
(6) (7) (8)
(9) (10) (11) (12)
(13) (14) (15)
【答案】-9、0、5、-13、8、-5、-8、-4、1、、112、-4、5、-4、-7.9
【解析】試題分析:根據(jù)有理數(shù)的減法法則,減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù),轉(zhuǎn)化為加法,然后根據(jù)異號(hào)兩數(shù)相加和同號(hào)兩數(shù)相加,可直接計(jì)算即可.
試題解析:(1) =(-7)+(-2)=-9
(2) =(-8)+(+8)=0
(3) =0+5=5
(4) =(-9)+(-4)=-13
(5) =5+3=8
(6) =(-3)+(-2)=-5
(7) = (-20)+(+12)=-8
(8)
(9)
(10) =
(11)
(12)
(13) =-4+9=5
(14)
(15)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙江省舟山市第23題)我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”
(1)概念理解:
請(qǐng)你根據(jù)上述定義舉一個(gè)等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點(diǎn)P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
(3)應(yīng)用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當(dāng)凸四邊形AD′BC為等鄰角四邊形時(shí),求出它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為8cm,分別過四個(gè)頂點(diǎn)A、B、C、D做四條直線EF、FG、GH、HE,并保證相鄰兩條直線垂直,相交于E、F、G、H四點(diǎn),且AE=BF=CG=DH.
(1)求證:四邊形EFGH是正方形;
(2)判斷無論如何按照上述要求作圖,線段EG、AC的中點(diǎn)是否重合,并說明理由;
(3)判斷四邊形EFGH的面積有無最大值,若有請(qǐng)寫出面積最大值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙江省溫州市第24題)如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6,O是射線BD上一點(diǎn),⊙O與BA,BC都相切,與BO的延長(zhǎng)線交于點(diǎn)M.過M作EF⊥BD交線段BA(或射線AD)于點(diǎn)E,交線段BC(或射線CD)于點(diǎn)F.以EF為邊作矩形EFGH,點(diǎn)G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設(shè)EF>HE,當(dāng)矩形EFGH的面積為24時(shí),求⊙O的半徑.
(3)當(dāng)HE或HG與⊙O相切時(shí),求出所有滿足條件的BO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣東省深圳市第22題)如圖,已知⊙O的半徑為2,AB為直徑,CD為弦,AB與CD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,鏈接PC。
(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為弧ADB的中點(diǎn),在PC延長(zhǎng)線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E,交弧BC于點(diǎn)F(F與B、C不重合)。問GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+6與x軸y軸分別交于點(diǎn)E,F.點(diǎn)E的坐標(biāo)為(-8,0),點(diǎn)A的坐標(biāo)為(-6,0).
(1)求K的值;
(2)若點(diǎn)P(x,y)是第二象限內(nèi)該直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)過程中,試寫出△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:當(dāng)P運(yùn)動(dòng)到什么位置時(shí),△OPA的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空,并在括號(hào)內(nèi)說明理由: 如圖,已知∠BAP與∠APD互補(bǔ),∠1=∠2,說明∠E=∠F.
證明:∵∠BAP與∠APD互補(bǔ)(_________), ∴AB∥CD(____________),
∴∠BAP=∠APC(__________).
又∵∠1=∠2(__________),
∴∠BAP﹣∠1=∠APC﹣∠2(_________),即∠3=∠4,
∴AE∥PF,(___________),
∴∠E=∠F(__________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com