【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)本次調(diào)查的學(xué)生人數(shù)為__________,娛樂節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù)是__________度.
(2)請將條形統(tǒng)計圖補充完整:
(3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛動畫節(jié)目的人數(shù).
【答案】(1) 300,72°;(2)詳見解析;(3)600.
【解析】
(1)從條形統(tǒng)計圖中可得到“A”人數(shù)為69人,從扇形統(tǒng)計圖中可得此部分占調(diào)查人數(shù)的23%,可求出調(diào)查人數(shù);娛樂節(jié)目所對應(yīng)的圓心角的度數(shù)占360°的20%,(2)求出“B”的人數(shù),即可補全條形統(tǒng)計圖,(3)樣本估計總體,求出樣本中喜歡動畫節(jié)目的百分比,去估計總體所占的百分比,用總?cè)藬?shù)去乘這個百分比即可.
解:(1)人,,
故答案為:300,72°.
(2)人,補全條形統(tǒng)計圖如圖所示;
(3)人,
答:該中學(xué)有2000名學(xué)生中,喜愛動畫節(jié)目大約有600人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場對A、B兩款運動鞋的銷售情況進行了為期5天的統(tǒng)計,得到了這兩款運動鞋每天的銷售量及總銷售額統(tǒng)計圖(如圖所示).已知第4天B款運動鞋的銷售量是A款的.
(1)求第4天B款運動鞋的銷售量.
(2)這5天期間,B款運動鞋每天銷售量的平均數(shù)和中位數(shù)分別是多少?
(3)若在這5天期間兩款運動鞋的銷售單價保持不變,求第3天的總銷售額(銷售額=銷售單價×銷售量).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD,直線EF與AB、CD分別相交于點E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點是平面內(nèi)的一個動點,連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
①當(dāng)點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式).
解:如圖2,過點P作MN∥AB,
則∠EPM=∠PEB( 。
∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD( 。
∴∠MPF=∠PFD( 。
∴ =∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當(dāng)點P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關(guān)系: ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正方體(圖1)沿著某些棱邊剪開,就可以得到正方體的表面展開圖,如圖2.在圖1正方體中,每個面上都寫了一個含有字母x的整式,相對兩個面上的整式之和都等于4x﹣7,且A+D=0,(說明:A、B、C、D都表示含有字母x的整式)請回答下面問題:
(1)把圖1正方體沿著某些棱邊剪開得到它的表面展開圖2,要剪開 條棱邊;
(2)整式B+C= ;
(3)計算圖2中“D”和“?”所表示的整式(要寫出計算過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC與Rt△ABD中,,,AC、BD相交于點G,過點A作交CB的延長線于點E,過點B作交DA的延長線于點F,AE、BF相交于點H.
(1)證明:ΔABD≌△BAC.
(2)證明:四邊形AHBG是菱形.
(3)若AB=BC,證明四邊形AHBG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足, ABCD的邊AD與y軸交于點E,且E為AD中點,雙曲線經(jīng)過C、D兩點.
(1)求k的值;
(2)點P在雙曲線上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標(biāo);
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當(dāng)點E的坐標(biāo)是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解:
如圖,一只甲蟲在5×5的方格(每個方格邊長均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右) 爬行記為“+”,向下(或向左) 爬行記為“﹣”,并且第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
例如:從A到B記為:A→B(+1,+4),從D到C記為:D→C(﹣1,+2).
思考與應(yīng)用:
(1)圖中A→C( , ),B→C( , ),D→A( , )
(2)若甲蟲從A到P的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請在圖中標(biāo)出P的位置.
(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請計算該甲蟲走過的總路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com