已知x2-4x-1=0,求代數(shù)式(2x-3)2-(x+y)(x-y)-y2的值.
【答案】分析:所求式子第一項利用完全平方公式展開,第二項利用平方差公式化簡,去括號合并得到最簡結(jié)果,將已知方程變形后代入計算即可求出值.
解答:解:原式=4x2-12x+9-x2+y2-y2
=3x2-12x+9
=3(x2-4x+3),
∵x2-4x-1=0,即x2-4x=1,
∴原式=12.
點評:此題考查了整式的混合運算-化簡求值,涉及的知識有:完全平方公式,平方差公式,去括號法則,以及合并同類項法則,熟練掌握公式及法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

30、已知x2+4x-1=0,求代數(shù)式2x4+8x3-4x2-8x+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知x2+4x+m2是完全平方式,則m的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x2+4x-2=0,那么3x2+12x-2010的值為
-2004
-2004

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x2-4x+1=0,求
x2
x4+x2+1
的值
1
15
1
15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

“a2≥0”這個結(jié)論在數(shù)學中非常有用,有時我們需要將代數(shù)式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.試利用“配方法”解決下列問題:
(1)填空:x2-4x+5=(x
-2
-2
2+
1
1
;
(2)已知x2-4x+y2+2y+5=0,求x+y的值;
(3)比較代數(shù)式:x2-1與2x-3的大。

查看答案和解析>>

同步練習冊答案