已知直線,請在平面直角坐標(biāo)系中畫出直線繞點A(1,0)順時針旋轉(zhuǎn)90°后的圖形,并直接寫出該圖形的解析式.

【答案】分析:在直線上取兩點:(-2,0),(0,1),根據(jù)兩點確定一條直線,把直線繞點A(1,0)順時針旋轉(zhuǎn)90°的問題,轉(zhuǎn)化為兩點(-2,0),(0,1)繞點A(1,0)順時針旋轉(zhuǎn)90°的問題,再用待定系數(shù)法求旋轉(zhuǎn)后的直線解析式.
解答:解:∵直線與坐標(biāo)軸交于(-2,0),(0,1)兩點,
∴(-2,0),(0,1)兩點繞點A(1,0)順時針旋轉(zhuǎn)90°后的坐標(biāo)分別為(1,3),(2,1),
設(shè)過(1,3),(2,1)兩點的直線解析式為y=kx+b,
,
解得:
∴旋轉(zhuǎn)后的直線解析式為y=-2x+5.
點評:本題考查了轉(zhuǎn)化的思想,即將直線的旋轉(zhuǎn)問題轉(zhuǎn)化為點的旋轉(zhuǎn)問題來解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標(biāo)為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當(dāng)點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標(biāo);
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標(biāo)為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當(dāng)點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標(biāo);

(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若

用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的

范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?

(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?

若有,請求出所有滿足要求的t值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A,B,C

(1)請完成如下操作:

①以點O為原點、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;

②適當(dāng)選用直尺、圓規(guī)畫出該圓弧所在圓的圓心D的位置(不寫作法,保留痕跡),并連結(jié)AD,CD

(2)請在(1)的基礎(chǔ)上,完成下列問題:

①寫出點的坐標(biāo):C          、D           ;

②⊙D的半徑=            (結(jié)果保留根號);

③若扇形ADC是一個圓錐的側(cè)面展開圖,則該圓錐的底面面積為         (結(jié)果保留π);

④若已知點E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由.

 


查看答案和解析>>

同步練習(xí)冊答案