【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F連接OD、BF,如果,求點(diǎn)D的坐標(biāo).
【答案】(1);(2)點(diǎn)D的坐標(biāo)為(,﹣4).
【解析】試題分析:(1)由邊的關(guān)系可得出BE=6,通過解直角三角形可得出CE=3,結(jié)合函數(shù)圖象即可得出點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)C的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出反比例函數(shù)系數(shù)k,由此即可得出結(jié)論;
(2)由點(diǎn)D在反比例函數(shù)在第四象限的圖象上,設(shè)出點(diǎn)D的坐標(biāo)為(n,﹣)(n>0).通過解直角三角形求出線段OA的長(zhǎng)度,再利用三角形的面積公式利用含n的代數(shù)式表示出S△BAF,根據(jù)點(diǎn)D在反比例函數(shù)圖形上利用反比例函數(shù)系數(shù)k的幾何意義即可得出S△DFO的值,結(jié)合題意給出的兩三角形的面積間的關(guān)系即可得出關(guān)于n的分式方程,解方程,即可得出n值,從而得出點(diǎn)D的坐標(biāo).
試題解析:解:(1)∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x軸,∴∠CEB=90°.
在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO=,∴CE=BEtan∠ABO=6×=3,結(jié)合函數(shù)圖象可知點(diǎn)C的坐標(biāo)為(﹣2,3).
∵點(diǎn)C在反比例函數(shù)y=的圖象上,∴k=﹣2×3=﹣6,∴反比例函數(shù)的解析式為y=﹣.
(2)∵點(diǎn)D在反比例函數(shù)y=﹣第四象限的圖象上,∴設(shè)點(diǎn)D的坐標(biāo)為(n,﹣)(n>0).
在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=,∴OA=OBtan∠ABO=4×=2.
∵S△BAF=AFOB=(OA+OF)OB=(2+)×4=4+.
∵點(diǎn)D在反比例函數(shù)y=﹣第四象限的圖象上,∴S△DFO=×|﹣6|=3.
∵S△BAF=4S△DFO,∴4+=4×3,解得:n=,經(jīng)驗(yàn)證,n=是分式方程4+=4×3的解,∴點(diǎn)D的坐標(biāo)為(,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林同學(xué)積極參加體育鍛煉,天天堅(jiān)持跑步,他每天以1000m為標(biāo)準(zhǔn),超過的記作正數(shù),不足的記作負(fù)數(shù).下表是一周內(nèi)小明跑步情況的記錄(單位:m):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
跑步情況(m) | +420 | +460 | -100 | -210 | -330 | +200 | -240 |
(1)星期三小林跑了_____米
(2)小林在跑得最少的一天跑了______米?跑得最多的一天比最少的一天多跑了_____米?
(3)若小林跑步的平均速度為240米/分,求本周內(nèi)小明用于跑步的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2x+a(a<0)與y軸相交于點(diǎn)A,頂點(diǎn)為M.直線y=x﹣a分別與x軸,y軸相交于B,C兩點(diǎn),并且與直線AM相交于點(diǎn)N.
(1)試用含a的代數(shù)式分別表示點(diǎn)M與N的坐標(biāo);
(2)如圖,將△NAC沿y軸翻折,若點(diǎn)N的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,AN′與x軸交于點(diǎn)D,連接CD,求a的值和四邊形ADCN的面積;
(3)在拋物線y=x2﹣2x+a(a<0)上是否存在一點(diǎn)P,使得以P,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2﹣(m+n)x+n(m<0)的圖象與y軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個(gè)單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣3<p<0時(shí),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)都在直線l的下方,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出當(dāng)x>0時(shí)不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場(chǎng)購(gòu)買某種圖書,第一次用1200元購(gòu)書若干本,并按該書定價(jià)7元出售,很快售完.由于該書暢銷,第二次購(gòu)書時(shí),每本書的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書的數(shù)量比第一次多10本,當(dāng)按定價(jià)售出200本時(shí),出現(xiàn)滯銷,便以定價(jià)的4折售完剩余的書.
(1)第一次購(gòu)書的進(jìn)價(jià)是多少元?
(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為 ,點(diǎn)E、F分別為邊AD、CD上一點(diǎn),將正方形分別沿BE、BF折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)M恰好落在BF上,點(diǎn)C的對(duì)應(yīng)點(diǎn)N恰好落在BE上,則圖中陰影部分的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方
形,然后按圖②的方式拼成一個(gè)正方形。
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于_________________.
(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積。
方法①_________________________________________________________.
方法②_________________________________________________________.
(3)觀察圖②,你能寫出,,mn這三個(gè)代數(shù)式間的等量關(guān)系嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com