【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長交DC的延長線于點(diǎn)E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.

【答案】(1)證明見解析;(2)矩形,理由見解析.

【解析】

(1)根據(jù)AB//CD可知∠ABF=ECF,BF=CF,AFB=CFE, 可證明△ABF≌△ECF.即可證明AB=CE.(2)根據(jù)∠AFC=2D 及外角性質(zhì)可證明AF=BF進(jìn)而證明AE=BC,即可證明四邊形ABEC是平行四邊形.

(1)FBC的中點(diǎn),

BF=CF.

∵在四邊形中,AB//CD,

∴∠ABF=ECF,

∵∠AFB=CFE,

∴△ABF≌△ECF,

AB=CE.

(2)四邊形ABEC是矩形,理由如下:

∵△ABF≌△ECF,

EF=AF,

BF=CF,

∴四邊形ABEC是平行四邊形.

∴∠ABF=∠D,

∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,

∴∠ABF=∠BAF,

∴AF=BF,

∴AE=BC,

∴四邊形ABEC是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+5(a0)交直線y=kx+n(k0)A(11),B兩點(diǎn),交y軸于點(diǎn)C,直線ABy軸于點(diǎn)D.已知該拋物線的對稱軸為直線x=

(1)ab的值;

(2)記直線AB與拋物線的對稱軸的交點(diǎn)為E,連接CE,CB.若△CEB的面積為,求k,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)(問題發(fā)現(xiàn))如圖1,在RtABC中,ABAC,∠BAC90°,點(diǎn)DBC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,請判斷線段BEAF的數(shù)量關(guān)系并寫出推斷過程;

(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CEAF,線段BEAF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;

(3)(結(jié)論運(yùn)用)在(1)(2)的條件下,若△ABC的面積為2,當(dāng)正方形CDEF旋轉(zhuǎn)到BE,F三點(diǎn)在同一直線上時,請直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一位同學(xué)想利用樹影測量樹高(AB),他在某一時刻測得高為1m的竹竿影長為0.9m,但當(dāng)他馬上測量樹影時,因樹靠近一幢建筑物,影子不全落在地面上,有一部分影子在墻上(CD),他先測得留在墻上的影高(CD)為1.2m,又測得地面部分的影長(BC)為2.7m,他測得的樹高應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy,A﹣30),B01),形狀相同的拋物線Cnn=12,34,的頂點(diǎn)在直線AB其對稱軸與x軸的交點(diǎn)的橫坐標(biāo)依次為2,3,5,813,根據(jù)上述規(guī)律,拋物線C2的頂點(diǎn)坐標(biāo)為_____拋物線C8的頂點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程ax2﹣(3a+1x+2a+1)=0有兩個不相等的實(shí)根x1、x2,且有x1x1x2+x21a,則a的值是( 。

A. 1B. 1C. 1或﹣1D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接三角形ABC中,,過CAB的垂線l交⊙O于另一點(diǎn)D,垂足為E.設(shè)P上異于A,C的一個動點(diǎn),射線APl于點(diǎn)F,連接PCPDPDAB于點(diǎn)G.

1)求證:;

2)若, ,PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O0,0),點(diǎn)A5,0),點(diǎn)B0,3).以點(diǎn)A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,BC的對應(yīng)點(diǎn)分別為D,EF

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時,求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時,ADBC交于點(diǎn)H

①求證ADB≌△AOB;

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為6的正方形ABCD中,點(diǎn)E是射線BC上的動點(diǎn)(不與B,C重合),連結(jié)AE,將ABE沿AE向右翻折得AFE,連結(jié)CFDF,若DFC為等腰三角形,則BE的長為_____

查看答案和解析>>

同步練習(xí)冊答案